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Three turbulent shear flows with quadratic mean-velocity profiles are generated 
by using an appropriately designed honeycomb and parallel-rod grids with 
adjustable rod spacing. The details of two of the flow fields, with quadratic mean- 
velocity profiles with constant positive mean-shear gradients ( a z ~ l / a X ~  > 0), are 
obtained, and include, in the mean flow direction, the development and distribu- 
tion of mean velocities, fluctuating velocities, Reynolds stresses, microscales, 
integral scales, energy spectra, shear correlation coefficients and two-point 
spatial velocity correlation coefficients. A third flow field is generated with a 
quadratic mean velocity profile with constant negative mean-shear gradient 
(a2~ l /aX~  < 0), to investigate in the mean flow direction the effect of the change 
in sign on the resulting field. An open-return wind tunnel with a 2 x 2 x 20ft 
test-section is used. 

1. Introduction 
Experimental determination of the development of turbulence in a shear flow 

with a quadratic mean-velocity profile is the purpose of this investigati0n.t 
Corrsin (1 957) pointed out that fully-developed turbulent shear flows 

(boundary-layer, jet, wake) have their turbulent shear stress carried by eddies 
comparable in size to the lateral extent of the flow boundaries. Hence, the flow 
may be affected by the boundary conditions. This led him to suggest experimental 
studies of a turbulent shear flow in which the complicating effects of the 
boundaries are absent. The simplest possible shear flow meeting this requirement 
is a homogeneous turbulent one, maintained by a uniform mean shear. 

The first attempt at  generating this type of flow was made by Rose (1966), using 
a non-uniformly spaced, parallel-rod grid as a flow generator. The main 
departures from homogeneity in the resulting flow field were in the longitudinal 
and lateral distributions of the turbulent scales. Champagne, Harris & Corrsin 
(1970) eliminated the lateral inhomogeneity of the turbulent scales, by using a 
transverse array of channels of equal widths but varying resistances as a flow 
generator. Rose (1970) and Hwang (1971) investigated the effect of initial condi- 
tions in a linear mean-shear flow, by using various combinations of a parallel-rod 

t This paper is based on a Ph.D. dissertation by one of the authors (H.K.R.). For 
details, refer to Richards (1971). 
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FIGURE 1. Flow-generation system. 

Mean-velocity R.m.s. fluctuating 
C o - ordinate component velocity component 

XI v1 = U(X,)  4 
x'2 q = 0 21;. 

x3 v3 = 0 216 

grid with uniform spacing, a honeycomb and grids of different geometries. Harris, 
Graham & Corrsin (unpublished manuscript) looked at the effect of more 
intense shear, and established the downstream development of the turbulence in 
linear mean shear flows for strain rates up to 40 s-l and total strains of about 10. 

The purpose of the present study is to generate a flow with a quadratic mean- 
velocity profile, and to observe the effect of the gradient of the mean shear on the 
resulting turbulence. 

2. Description of apparatus and facilities 
2.1. The test facility 

The test facility is the same as that used by Rose (1970). It will not be described 
further. 

2.2. The mean-shear-$ow generators 
The desired flow in this experiment is one with a quadratic mean-velocity profile. 
The flow (figure 1) passes through a f in .  cell-diameter hexagonal honeycomb of 
suitable design, which by itself generates a linear mean-velocity profile. gin. 
downstream from the exit plane of the honeycomb, a parallel round-rod grid 
with non-uniform spacing is placed, which provides the quadratic mean- 
velocity profile. Two different grid generators are used. Both are composed of 
aluminum rods, one of #in. dia. the other &in. For details, see Richards 
(1971). 

The parallel-rod grid was placed downstream from the honeycomb section 
because the effect of this section on the flow was so great that it was difficult to 
place the grid in front of i t  and achieve the desired results. 
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Nominal 
a2Dl;laz A B C 

12.3 40.5724 3-328 6.13 
8.4 38-679 7-138 4.18 

- 6.7 31.27 22.1 - 3.37 

TABLE 1. Coefficients of the least-squares fit to the mean velocity in the form 
D1(X2) = A + B X , + C X i  

~IlUO 

FIGURE 3. Longitudinal development of mean velocity. Upper curve and right 
axis, & rods; lower curve and left axis, 8 rods. Xl/la: 0, 6; 0, 7;  A, 9. 

curvature for the three profiles. The values of A ,  B and C, the coefficients of the 
fitted quadratic profile, are given in table 1. 

Figure 2 shows that, over the range 0.25 < X,/h < 0-8, the curvature is very 
nearly constant. This corresponds to approximately 1-1 ft. 

3. Results 
3.1. F o r m  and development of mean-ve1ocityJield.s 

The two profiles that have a constant positive mean-shear gradient are each 
quadratic to within 0.3 % of a least-squares fit. The mean shear aD1/aX, at the 
tunnel centre-line is about 15.6 s-l in both cases. The gradient of the mean shear 
a2Dl/aX; is 8-4 (ft s)-l in the case of the # rod generator, and 12.3 (ft s)-l in that 
of the & rod. A comparison of the mean shear at several X,/h locations is given 
in table 2.  The centre-line velocity Dc is 50 f t  s-l in all runs. It is clear from figure 3 
that the mean-velocity fields maintain essentially the same distribution through- 
out the length of the test section. The effects of the boundary layer appear at a 
distance from the walls of X 2 / h  N 0.2 a t  a longitudinal position of X,/h = 9.0. 
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0.02 

X2P Q rods -& rods 
0-25 11.3 9.5 
0.33 12.7 11.5 
0.41 14.1 13.6 
0.50 15.6 15.6 
0.59 16.9 17.6 
0.67 18.3 19.6 

- 
- 0  

I I I I I I I 1 I 

0.75 19.7 

8.4 

21.7 

12.3 

TABLE 2. Mean shear dcI,kdX2 s-l lateral distributions. XJh = 5.0. 

The quadratic mean-velocity field with azUl/aXi < 0 also maintains its distribu- 
tions throughout the length of the test section. The value of the second derivative 
of the velocity a201/aX~ for this flow is - 6.7 (ft s)-l. The mean shear at the 
centre-line of the wind tunnel is 15.4 s-l. 

3.2. Centre-line d e v e l o ~ ~ e n t  of the ~ u c t u a t ~ n g  velocity fields 

The downstream development of the intensities of the fluctuating velocity com- 
ponents and the values of the shear correlation coefficients for the quadratic 
velocity profiles (a2U1/aXi > 0 )  generated by the 3 and & rod grids are presented 
in figures 4 and 5. The turbulent intensities decay from the large values just 
downstream of the generators to minimum values, then increase monotonically. 
The u; and us components reach minimum values near X l / h  = 5.0, while the ui 
component reaches a minimum at about X,/h  = 7.5. 
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1.2 0.1 

---p: ( X I O ~ ) - ~ . ~  

1 2 3 4 5 6 7 8 9  

XlP 
FIGURE: 5. Longitudinal development of turbulence with mean-velocity profile a2U, /ax  = 

12.3 (ft s)-l, X,/h = 0.50, X J h  = -0.07. i2i rods. Symbol key as for figure 4. 

In  both experimental flows, the ui fluctuating component is larger than u; 
just downstream of the grid generators, but at  the exit plane of the test section 
this is reversed. The intensity of the two components is equal at 

Xl /h  N 4.5 ((Xl/Dl) (aDl/aX2) N 2.9). 

This is analogous to the findings of Champagne et al. (1970) and Hwang (1971) 
in their investigations with linear mean-velocity shear flows. I n  both their cases, 
the intensities of the two components were equal at 

X,/h  N 6.5 ((Xl/ol) (av1/aX2) 21 2.1). 

The longitudinal development of the ui component is very similar to that of 
ug. Both reach a minimum value at essentially the same downstream position, and 
increase to about 15% above their minimum values at the exit plane. The ui 
intensity also increases downstream of X,/h = 7.5, but by only about 2-4 %. The 
shear correlation coefficients reach a maximum value of about 0.46 in the vicinity 
of X l / h  = 5.0, then decrease slightly in the remainder of the test section. The 
value of 0.46 is comparable to those observed in previous investigations of 
‘nearly’ homogeneous shear flows. (Rose 1966; Champagne et al. 1970; Hwang 
1971.) The rather peculiar behaviour of the shear covariance function ulu2/Ui in 
figure 4, as compared with figure 5, appears to be caused by the greater slopes in 
the ui/gc and u;/cc decay curves. However, the correlation coefficient uluz/u;u~ 
is consistent with other data. The longitudinal development of the fluctuating 
components of the additional flow field generated with the 8 rod grid is presented 
in figure 6. The behaviour of the component intensity decay and growth is 
essentially the same as for the earlier two cases, where the velocity profiles have 
constant positive mean-shear gradients. 

-- 

- 
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6 .  Longitudinal development of turbulence with mean-velocity profile aaul/aXi = 
6.7 (ft s)-1, X,/h = 0.50, X,/h = -0.07. Q rods. Symbol key as for figure 4. 

0.75 0.75 

0.50 3 0.50 

0.25 0.25 

1.6 2.0 2.4 2.8 3.2 3.6 1.4 1.8 2.2 2.6 

zG;/uc( x 102) zl;/Do( x 102) 

FIGURE 7. Lateral surveys of turbulence with mean-velocity profile a z ~ l / a X ~  = 8.4 (ft s)-l, 
X,/h = -0.07. + rods. Symbol key as for figure 3. 

3.3. Lateral surveys of the J’Euctuating velocity Jields 

Lateral surveys of various quantities associated with the fluctuating velocity 
fields were made a t  three longitudinal positions, viz. 

X,/h = 5.0, X,/h = 7.0 and X,/h = 9.0. 

Preliminary investigations had shown X,/h = 5.0 to be the point of minimum 
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- 0.75 0.75 

.E; - 0.50 K 0.50 

- 0.25 0.25 

I I I 0 0 
I 0 1.4 1.8 7.2 2.6 

(u; /q)  x 102 

I I I I 
0.8 1.0 1.2 1.4 1.6 

(U;/rQ x 102 
FIGURE 8. Lateral surveys of turbulence with mean-velocity profile a 2 ~ l / a X ~  = 12.3 (ft s)-l,  

X,/h = - 0.07. -& rods. Symbol key as for figure 3. 

intensity of the u; component, and that the lateral distributions of turbulence 
quantities were quite smooth. The limit X,/h = 9.0 was fixed by the length of 
the wind tunnel. Figures 7 and 8 depict the lateral distributions of the u; and uh 
intensities for the flow fields with constant positive mean-shear gradients. 

In  both flow fields, the principal characteristics shown by the u; component 
are an essentially linear variation in the X ,  direction at a given longitudinal 
position, and an increase in the gradient au;/aX, in the downstream direction. 
The increase in the gradient aui/aX, is the significant result. This is due to the 
variation of the total strain (X,/Ul) (aUJaX,) in the X ,  direction. The importance 
of this parameter will be discussed in later sections. 

The lateral surveys of the uh component shown in figures 7 and 8 are not as 
definitive, since the uk component reaches its minimum value at values of X,/h 
between 5 and 9. The intensity of the ub component also varies almost linearly at 
a given X,/h position and the gradient au.!JaX, increases in the XI direction. This 
phenomenon is related to the total strain to which the turbulence has been sub- 
jected. As in the case of the u; intensity, the parameter (Xl /g l )  (a~ , /aX, )  is the 
important quantity in predicting the downstream development of the ud com- 
ponent. It is found that the u; intensities reach minimum values in these flows at 
total strains of about 3-0, while ui intensities reach them a t  total strains of 
about 4-5. This difference is due to the two-dimensional nature of the mean flow, 
and the way the turbulent energy is partitioned among the components (Richards 
1971). 

Figure 8 shows a slight change in the slope of the u; and u;l curves at 
X,/h = 0.45. The cause must be associated with the small departures from a, 
quadratic of the mean-velocity profile, as seen in figure 2. A least-squares fit of 
the mean-velocity data points between X,/h = 0.25 and 0.75 shows a maximum 
difference of 0.1 % between calculated and experimental values. This gives some 
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FIGURE 9. Lateral surveys of turbulence with mean-velocity profile a2g l /aq  = - 6.7 (fts)-l, 

X J h  = - 0.07. Q rods. Symbol key as for figure 3. 

0- 
0.5 1.2 1.9 2.6 3.3 4.0 

- -  
( - ~ , u , / q  x 1 0 4  

FIGURE 10. Lateral surveys of Reynolds stress with mean-velocity profile a 2 g l / a g  = 8-4 
(ft s)--l, LX3/h = - 0-07. Q rods. Symbol key  at^ for figure 3. 

indication as to the sensitivity of the intensity distribution to the mean-velocity 
distribution. 

Figure 9 presents the lateral surveys of the turbulence resulting from the 
velocity profle, generated with the # rod grid, that has a constant negative mean- 
shear gradient. In  this case, the fluctuating components vary linearly in the 
lateral direction, but with a slope that is opposite in sign to the flows with constant 
positive mean-shear gradients. The reason for this is the reversal of the lateral 
variation of total strain relative to the previous flows. In  the present case, the 
the gradient au;/aX, is negative, and its magnitude increases in the downstream 
direction. 
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FIGURE 11. Lateral surveys of Reynolds stress with mean-velocity profile 
azOl/aXz = 12.3 (ft s)--l, Xs/h = - 0.07. i% rods. Symbol key as for figure 3. 

1'0° f 
0.75 - 

5 0.50 - 
h 

0.25 - 

FIGURE 12. Lateral surveys of Reynolds stress with mean-velocity profile 
azul /aq = - 6.7 (ft s)-l, Xs/h = - 0.07. Q rods. Symbol key as for figure 3. 

Figures 10-12 show the lateral distributions of the turbulent shear stress non- 
dimensionalized by the square of the centre-line velocity oc. The first two cases 
are the result of the quadratic mean-velocity profiles with constant positive 
mean-shear gradients, the third case results from a quadratic mean-velocity 
profile with a constant negative mean-shear gradient. Figures 10 and 11 show that 
the turbulent shear stress varies linearly in the X ,  direction, and that the gradient 
- au,u2/aX, increases in the downstream direction. Figure 12 shows that the 
turbulent shear stress also varies linearly in the X ,  direction, but that the gradient 
-aulu2/aX, has the opposite sign, and therefore decreases in the downstream 
direction. 

Since the mean shear aV1/i3X2 is positive in all portions of the flow fields not 
affected by the boundary layer, the quantity ulu2 is negative at  all points of 
interest. The Reynolds stress component, defined as 712 = -pu1u2, is therefore 
positive without exception. 

- 

- 

- 
- 
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FIGURE 13. Measurement of two-point spatial velocity correlation coefficients : 
(a) ~110-2) ; ( b )  R11(%3)' 

3.4. Two-point spatial velocity correlation coeficients 
The two-point spatial velocity correlation coefficient is defined as 

u,(X) u j (X  + r )  Aij(X,r) = u; (X)u ; (X+r) '  

u i (X)  is the fluctuating velocity in the i direction at a point in space identified 
by the vector X, and r is the vector identifying the spatial separation of the 
two points. This expression reduces to 

for the measurements of this study. Recall that the u1 fluctuating component is 
in the direction of the mean flow. 

Data were taken at three longitudinal positions: X J h  = 5.0, 6.7 and 8.5 in the 
flows with constant positive mean-shear gradients. The use of these positions was 
dictated by external structural members of the wind tunnel. At each of these 
longitudinal positions, three lateral positions for data taking were chosen: 
X,/h = 0.33, 0.50 and 0.67. Spatial separations of the two single-wire probes 
were in either the X ,  or X ,  direction. Figure 13 shows the probe configurations 
used for taking measurements. 

Figures 14 and 15 show that the correlation coefficient curves a t  a given longi- 
tudinal position are essentially identical at all three lateral positions. This holds 
true whether the separation is in the X ,  or X ,  direction. Figure 15 shows the 
greatest departure from this behaviour in the case of the & rod generator with 
separation in the X, direction. 

The correlation coefficients in the X, direction remain positive at all values of 
the separation. This phenomenon was observed by Rose (1966), Champagne et al. 
(1970) and others. Correlation coefficients with separation distances in the X, 
direction take on negative values as shown in figure 15. The incompressible mass 
conservation equation requires a negative transverse correlation coefficient a t  
some positions in the plane normal to the mean flow so this negative region is to 
be expected. 



176 H .  K .  Richards and J .  B. Morton 

?8 (in') 
FIGURE 14. Two-point velocity correlation coefficient curves with separations 

in the Xa direction. X,/h = 8.5. 
XaP 8 rods 1% rods 

0.33 -0 -Cl 
0.50 0 0 
0.67 0- 5 

FIGURE 15. Two-point velocity correlation coefficient curves with separations 
in the X ,  direction. X,/h = 8.5. Symbol key as for @re 14. 

Figures 16-19 show the downstream development of the Bll(r2) and Bl1(y3) 
velocity correlation coefficients along the wind-tunnel centre-line for the same 
flows. The correlation coefficients increase in the downstream direction for any 
particular value of the two-point separation distance. 

3.5. Integral scales 

The longitudinal integral scale is defined as 
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r2 (in.) 

'IGURE 16. Longitudinal development of two-point correlation coefficient curves with 
separations in the X, direction. b rods. X 2 / h  = 0.50. S J h :  -0, 5.0; 0, 6.7; 0-, 8.5. 

r3 (in.) 

separations in the -U, direction. + rods. S,/h = 0.50. Symbol key as for figure 16. 
IGURE 17. Longitudinal development of two-point correlation coefficient curves with 

1 .o 

0.2 

0 

r2 (in.) 

IGURE 18. Longitudinal development of two-point correlation coefficient curves with 
separations in the 5, direction. i$- rods. X,/h = 0.50. X J h :  -0, 5.0; 0, 6.7; m-, 8.5. 

12 F L M  73 
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ra (in.) 
FIGURE 19. Longitudinal development of two-point correlation coefficient curves with 

separations in the X ,  direction. i$i- rods. X,/h = 0.50. Symbol key as for figure 18. 

R,, is the two-point velocity correlation coefficient of the u1 fluctuating compo- 
ment. Lateral integral scales L, and L, are defined in a similar manner, where the 
integrations, with respect to r2 and r,, are of R,,(O, r2,  0)  and R,,(O, 0,r3).  The 
integral scale characterizes the size of the energy-containing eddies in a turbulent 
flow. R,,(r,, 0,O) is difficult to measure experimentally because of hot-wire inter- 
ference effects. Consequently, the one-dimensional energy spectrum was used 
instead (Richards 1971). 

The lateral integral scales require the measurement of the correlation coeffi- 
cients to large distances (equation (3)). Owing to the limited size of the wind 
tunnel and the growth of the boundary layer, it was not always possible to 
separate the hot wires by a distance so large that the effective zero of the correla- 
tion coefficient function was reached. In  the cases of R,,(O, r2, 0 ) ,  the maximum 
separation distance used was eight inches, while in a few cases separation dis- 
tances of about 3in. were the maximum that could be attained. (This was 
especially a problem near the top and bottom, i.e. x2/h = 0.33 or x2/h = 0.67.) In 
these cases, the large-separation character of the correlation coefficient curves 
was approximated by exponentiaI curves in a manner described by Rose (1966). 
In  all cases, however, separations of a t  least three integral scales were possible. 

The lateral correlation coefficient R,,(O, 0, r,) takes on negative values at 
relatively small values of r3 (figures 17 and 19). These remain negative for the 
largest values of r3 that can be achieved. Therefore, the first zero of the correla- 
tion coefficient function is used as the upper limit of integration to determine La. 

Table 3 summarizes the values of the integral scales. The scales are reIatively 
constant in the X, direction, even though the spacing of the rods in the generators 
is non-uniform. The rod spacing differs by 42% between X2/h  = 0.33 and 
X2/h  = 0.67, while the greatest lateral deviation in the value of an integral scale 
is k 5% from the mean. This occurs in the case of the & rod grid for L,. 

Figure 20 shows the longitudinal development of the integral scales at  the 
centre-line of the wind tunnel. As has been found in all previous investigations 
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X I P  5.0 6-7 8.5 8.5 8.5 
Xzlh 0.5 0.5 0.5 0.33 0.67 

Q rods 
2.18 2.71 3.48 - - Ll ( h a l t  

L., 0.90 1.02 1.16 1.15 1.12 
L2 1.34 1.55 1.73 1.71 1.69 

X l P  5-0 6.7 8.5 8.5 8.5 
X d h  0.5 0.5 0.5 0.33 0-67 

1% rods 
1.32 1.46 1.80 - - Ll (in.)t 

L2 0-83 1.00 1.11 1.08 1.11 
L3 0.54 0.60 0.69 0.66 0.73 

TABLE 3. Summary of integral scales with mean velocity profile i3z~l /aX~ = 8.4 (ft s)-l or 
12.3 (ft s)-l. ?Values determined from one-dimensional energy spectra. 

- .  
4 5  6 7 8  9 

X l P  
FIGURE 20. Longitudinal development of integral scales with mean-velocity profile 

aaul/aFz = 8.4 (ft X 2 / h  = 0-50, X,/h = -0.07. m, 8 rods; 4, -&i rods. 

of turbulent shear flows with uniform mean shear, the integral scales increase 
monotonically in the flow direction. 

One of the desired goals was to achieve a flow whose lateral extent was large 
compared with the integral scales. (Cf. 0 1.) For the case of the # grid (positive 
curvature), the worst case was 2Lz/H, N 0.25. For the & grid, the worst case 
was 0.2. Here H, is the lateral extent of the flow that was unaffected by the 
boundary layers. These numbers are so small that some confidence can be placed 

12-2 
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I f  I I I I 1 I 

3 4 5 6 7 8 9 

XI/h 
FIGURE 21. Longitudinal development of microscales with mean-velocity profile 
azp7Jax; = 8.4 (ft s)--l, X,/h = 0.50, X,/h = -0.07. Symbol key as for figure 20. 

in the results. These compare favourably with other investigations (e.g. the value 
of Champagne et al. for 2L2/He N 0.24).  For the negative-curvature case, the field 
is somewhat narrower. 

3.6. Microscales 

The longitudinal Taylor microscale is defined by 

A; = 2u2,[(aul/ax1)2]-? (4) 
The lateral Taylor microscales A, and A, are defined in the same manner, with 
the spatial derivatives in the X, and X, directions, respective1y.t In  addition, it 
is assumed that Taylor's hypothesis in the form 

apt = - U1 apx, ( 5 )  

holds approximately for this flow field. The approximation identifies the 
temporal history at a fixed point with the convected spatial history; it has been 
found to hold in flows where the turbulence level is relatively small (Comte- 
Bellot & Corrsin 1971). 

Combining equations ( 4 )  and ( 5 )  yields 

A; = 2?7;26; [(au,/at)y. (6) 

This allows one to determine the longitudinal microscale by differentiating the 
uI component of the turbulence with respect to time. 

Figure 21 shows the longitudinal development of A, along the centre-line of the 
wind tunnel. The A, microscale of the turbulence is greater at any downstream 
position for the Q grid flow than for the &. For both test flows the microscale 
increases monotonically downstream, but the rate of increase decreases markedly 
for the & rod grid at large values of XJh.  A similar result is shown by Hwang 

and A: differs from that commonly used in isotropic turbulence 
by a factor of 2. 

t This definition of 
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FIUUFLE 23. Lateral distributions of the microscale with mean-velocity prome 
a z u l / a g  = 12-3 (ft s)-l, X J h  = - 0-07.& rods. Symbol key as for figure 3. 

(1971). In  his experiment, grid mesh-size is roughly analogous to rod spacing in 
the present experiment. 

Figures 22 and 23 show the lateral distributions of the microscale A, at various 
longitudinal positions. The microscale is more uniform laterally in the flow field 
generated by the #rod grid than in that associated with the +g rods. Both figures 
show the microscales to be more laterally uniform than in the case reported by 
Rose (1966), where the flow field was also generated by a non-uniformly spaced 
round-rod grid. 

The lateral microscales A, and A, must be evaluated in a different manner, since 
in these cases no simple approximation relating the spatial and temporal deriva- 
tives exists. In  statistically-steady homogeneous turbulence it has been shown 
(Batchelor 1953) that, for vanishingly small values of the separation r,, the two- 
point correlation coefficient R,,(O, r,, 0) can be approximated by the first two 
terms of a Taylor series, viz. 

R,,(O, r,, 0) _N 1 - rl/AE. (7) 

This defines a parabola with vertex at r2 = 0, R,, = 1, and provides a simple way 
12-3 
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XIP 5.0 6-7 8.5 8.5 8.5 
X,lh 0.5 0.5 0.5 0.33 0.67 

Q rod grid 

A, (in.) 0.39 0.48 0.53 0.52 0.51 
0.34 0.37 0.37 0.37 0.37 

A, 0.34 0.37 0.38 - - A, 

-& rod grid 

A, (in.) 0.38 0.45 0.49 0.47 0.50 
A, 0-32 0.33 0.32 0.32 0.32 
A3 0.32 0.32 0.33 0.33 0.33 

TABLE 4. Microscales in generated flow fields with mean-velocity profile 
a z ~ J a X ~  = 8.4 (ft s)-l or 12.3 (ft s)-l. 

to  evaluate A, from the intersection of the parabola with the r2 axis. The micro- 
scale A, can be found in the same manner, where now 

Rose (1966) suggested a method of finding the microscale graphically, by plotting 
the small separation data points against (1 - Rll) on a log-log plot, then fitting 
a straight line with slope 2 to them. The intersection of the straight line with the 
ordinate value (1 - Bll) = 1 establishes the value of the microscale. This method 
was used by Champagne et a&. (1970) and Hwang (1971), as well as Rose (1966). 

The results for the microscales are shown in table 4. We estimate that these 
values are accurate to f 6 yo. From these data, it appears that A, grows 
somewhat in the axial direction, but A, and A, do not, within the uncertainty of 
the measurements. 

R,,(O, 0, r,) N 1 - ri/Az. (8) 

4. Analysis of experimental results 
4.1. Homogeneity and stationarity in the generated $ow jields 

The experimental results of $3  demonstrated that the turbulence in this flow is 
not homogeneous in the X, and X, directions. That is to be expected, since the 
only possible mean-velocity profile to sustain a homogeneous turbulent field is 
linear. However, the degree the generated turbulent fields depart from homo- 
geneity is of interest. 

A criterion for homogeneity is that the mean flow and turbulence statistical 
properties vary by relatively small amounts over distances as large as the largest 
characteristic lengths of the turbulence. A mathematical statement of this 
criterion is given by Champagne et al. (1970) in the form 

m is a mean property, V is the gradient operator, and A is the largest charac- 
teristic length of the turbulence (e.g. the integral scale L) .  

Figures 4-12,ZO and 21 show that inhomogeneities occur in the mean-square 
values of the turbulent velocity components, in the shear-stress term in the 

A/ylVml << 1. (9) 
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Champagne et al. Hwang (1971) 
Q rods 2% rods (1970) M = 2  

(L,/hl) (ahllax,) 0.0088 0.0028 0.015 0.0083 
(aLl/am 0.014 0.0048 0.010 0.014 
( ~ 1 / 4  (a4ax1, 0.0040 0.0026 - - 
Wl/&G%/%) 0.0048 0.0025 - - 
(L,/u,u,) (~U,U, /~~Y , )  0.00045 0.0027 - - 

(L2/4  ) (a4ax2) 0.041 0.042 - - 
- - (LZ/&) (a4axz) 0-035 0.037 

(&/~iuz) (%i.~z/aXz) 0.070 0.079 
- -  - - 

TABLE 5. Departure from homogeneity of generated flow fields with mean velocity profile 
3Dl/8;k-; = 8.4 (ft 5)-1 or 12.3 (ft s)-l. Wind-tunnel position: X,/h = 7.0, X,/h = 0.50, 
X,/h = -0.07. 

X ,  and X ,  directions, and in the length scales L, and A, in the X ,  direction. The 
results of calculations using (9) are given in table 5. In  addition, table 5 includes 
results of Champagne et al. (1970) and Hwang (1971) for linear shear flows, and 
reveals that the values involving the gradients of the scales in the longitudinal 
direction are quite comparable. Departure from homogeneity in the X ,  direction 
of the fluctuating components is smaller than that of the scales, particularly in 
the case of the # rod grid flow. It is concluded that, even though there is growth 
in the scales and fluctuating components, the rate is such that the flow is relatively 
homogeneous in the S, direction. 

Applying the same criterion reveals that the turbulent quantities charac- 
terizing the flow field are much less homogeneous in the X ,  direction. The values 
obtained are an order of magnitude larger than comparable ones in the X ,  direc- 
tion. This behaviour is totally unlike the results in linear shear flows, and must 
be attributed to the X ,  gradient in the mean shear. 

As a test of stationarity in a frame of reference convected with the centre-line 
velocity gc, the characteristic length used previously is replaced by TUc. (T is the 
integral time scale in the convected frame.) Since T cannot be measured experi- 
mentally with the present instrumentation, it is measured following Champagne 
et al. (I  970) as 

T N 0.045s for the $ rod grid flow and T N 0.043 for the & case at X,/h = 7.0. 
The characteristic lengths TUc are therefore approximately 2.3 and 2.2 ft, respec- 
tively. Substituting these values of TOc in place of the integral scales L,in the 
relationships in table 3 yields values an order of magnitude larger than those 
previously obtained. Thus, with respect to the convected frame, the departure 
from homogeneity is greater in the longitudinal direction that that measured 
with respect to a fixed frame. It is roughly comparable with the homogeneity in 
the X ,  direction measured with respect to a fixed frame. 

All results show that the turbulent field is in a state of continuing evolution. 
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s,p 01, (deg.), 8 rods a, (deg.). 5% rods 

5-0 -29, 61 -28, 62 
7.0 -26, 64 -26, 64 
9.0 -24, 66 -23,  67 

TABLE 6. Principal axes of turbulent stresses with mean velocity profile aBol/aXa = 8.4 
(ft s)-l or 12.3 (ft s)-l. Wind-tunnel position: X,/h = 0-50, X& = - 0.07. 

X l / h  ua/ub # rods ualub 5% rods 

5.0 2.7 3.0 
7.0 3-4 3.7 
9.0 3.5 3.4 

TABLE 7. Ratios of principal turbulent stresses in the X I ,  X ,  plane with mean velocity 
profile a ~ ~ l / ~ X ~  = 8.4 (ft 9)-1 or 12.3 (ft s)-I. Wind-tunnel position: X,/h = 0.50, 
X3/h = -0.07. 

4.2. Axes of principal turbulent stresses 

The principal axes of the turbulent stresses in the X,, X ,  plane for rectilinear 
two-dimensional mean flows are given by 

- -  
a, = 4 tan-1 2 u Z  [u: - u3-l. 

a, is the angle between the direction of the mean flow and the principal axes of 
the turbulent shear stress. Using data presented in figures 7, 8, 10 and 11, and 
equation (1 I ) ,  the orientations of the principal axes for the flows with constant 
positive mean-shear gradients have been computed a t  several downstream 
positions; they are presented in table 6. These results show that the principal 
axes of the mean stresses, which are at  -t 45" for this flow, and the principal axes of 
the turbulent stresses are not aligned. Further, they show that the turbulent 
stress principal axes and the mean-flow principal axes diverge as the flow pro- 
ceeds in the X ,  direction. This was observed by Hwang (1971) in a linear shear 
flow for that part of it in which the turbulence was still decaying. The values of 
a, at X,/h = 5.0 in this experiment ( -29 ,  61; -28, 62") are similar to those 
obtained by Champagne et al. (1970) ( - 28, 62") in the 'nearly' homogeneous 
part of their flow field. 

The magnitudes of the principal stresses in the X,, X, plane are given by 

The ratios of these magnitudes are calculated a t  the same tunnel positions as 
in table 6. The results of these calculations are presented in table 7. It is of 
interest that the magnitude of the ratio f l a / f l b  for the flow at X,/h = 5.0 is roughly 
the same as that found by Hwang (1971) in the approximately homogeneous 
part of his flow. 
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0.03 i 

I I I I 1 
1 .o 2.0 3.0 4.0 

FIGURE 24 Longitudinal development of turbulence against total strain 
(X,/~,)(a~,/aX,). (i) Exit plane. (Richards 1971, linear mean profile.) 

Hwang (1971) Champagne Richards (1971) Rose (1966) 
-3- rods 2 in. mesh et al. (1970) Q rods 

qFc 0 8 A + 
%lUC 0 w 

4.3. Gradient of turbulent component energies in the longitudinal direction 

A particular feature of the results of this investigation is the growth of the energy 
in the u1 and u3 components, after they reach minimum values at about X,/h = 5-0 
on the tunnel centre-line, for all profiles. Growth in the u2 component energy is 
also evident, but smaller. This behaviour was observed in investigations using 
linear mean-velocity profiles, provided the total strain was sufficiently large. 

Recent theoretical papers by Lumley (1965), Townsend (1970) and Deissler 
(1970) stressed that equilibrium states are not reached in a developing turbulent 
shear flow. The results of this investigation tend to support these theoretical 
ideas. 

Computed values of the total strain (XJV,)  (agl/8X2) are presented in table 8 
for all three test flows. Centre-line values at X,/h = 9.0 are about the same in all 
cases: viz. 5.6. Except for Harris et al., previous linear mean profile investigations 
yielded values of the strains considerably lower than this. 

In  the cases presented by Rose (1966), Champagne et al. (1970) and Hwang 
(1971), the centre-line exit plane strains were 2.7,3.3 and 3.2, respectively. Thus, 
it appears likely that the growth of the turbulent component energies was not 
observed because the turbulence did not undergo sufficiently large total strain. 
Figure 24 supports this supposition. It is a plot of selected data from several 
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1.20 

1.15 

1.10 

1.05 

1.00 

x, ai7, -- rJ1 ax, 
FIGURE 25. Longitudinal development of turbulence against total strain (X,/o,)  x 
(a~ , /aX , )  with mean-velocity profile a201/az = - 6.7 (ft a)-,, X J h  = - 0.07. 8 rods. 
X,/h: 0, 0.33; A, 0.50; a, 0.67. 

1.05 

1-00 

x, ai7, 
0, ax, 

linear profile (Richards 1971); 0,  1% rods, a z ~ , / a X ~  = 12.3 (ft a)-,; - , Q rods, 

-- 

FIGURE 26. Longitudinal development of turbulence against total strain (X , /uJ  x 
( a ~ , / a X , ) .  0-, Hwang (1971), &in.  mesh; 0-, Hwang (1971), 2in.  mesh; 0, Q rods, 

a 2 ~ l / ~ ~  = -6.7 (ft s)-I; A, Champagne et al. (1970); V, Harris et al. 
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5.0 0.33 2.81 3.97 
0.50 3.10 3.08 
0.67 3.29 2.39 

7.0 0.33 3.94 5.66 
0.50 4.35 4.32 
0.67 4.61 3.34 

9.0 0.33 5.06 7.15 
0.50 5-59 5.55 
0.67 5.92 4.30 

TABLE 8. Total mean strain (X l /u l )  (agl/aX,) at various positions. 

2-52 
3.12 
3.52 

3.63 
4-37 
4.93 
4-54 
5.62 
6.34 

X,/h = - 0.07. 

experiments that had similar turbulent energy levels, excepting Rose (1966) and 
the linear mean-velocity flow of Richards (1971). 

The development in the present work is quite similar to that in Champagne et a,?. 
(1970) and Hwang (1971). The growth phase of the u1 component energy is just 
being reached in the first two cases, if it  is to occur. The plot of the data with 
a linear mean velocity profile from Richards (1971) shows clearly the increase in 
the u1 component energy. 

The results of Rose (1966), while at a somewhat lower turbulence level, reflect 
constant values of u; for a variation of total strain from 1.8 to 2.7. The results of 
Champagne et al. (1970), as plotted in figure 24, show a similar behaviour, viz. 
ui E constant for the range 1-9 < (Xl/al) (a0JaX2) < 3.3. The results of this 
study show that u; varies by less than 3% in the range of total strain 
2.0 < (Xl/Ul) (aU1/8X2) < 3.6; thus the results in that particular range of total 
strain are not dissimilar from those of Champagne et al. 

Figure 25 further reinforces the notion that the longitudinal development of 
the turbulence is dependentprimarilyupon the totalstrain. This plot was obtained 
from data gathered from a single flow a t  three different lateral positions normal- 
ized by the minimum value of the ratio Z C ; / ~ ~  a t  each lateral position. It shows 
clearly that a strain of about 3.0 is where the minimum value of the fluctuating 
u; component is reached regardless of lateral position. The minimum value of u; 
reached in each case of course depends on the mean shear to which the turbulence 
has been subjected and the initial level of turbulence introduced by the grid. 
Figure 26 compares the results of various other test flows with the composite 
curve of figure 25. 

Figures 4-6 confirm that, for the flows studied in this investigation, the ui and 
component energies reach minima at total strains of about 3.0, and the u; 

component energy reaches its minimum at a total strain of about 4.5. This value 
for the u; component minimum is about the same as that reported by Rose (1970) 
and Hwang (1971) at the position where their turbulence reaches its minimum 
level in linear shear flows produced with three-dimensional generators. 

The authors would like to thank Dr W. G. Rose for his helpful suggestions 
during this investigation. 
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